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EXECUTIVE SUMMARY  
 

This document specifies the data stream query language (DSQL) chosen for the Smart Vortex 

project. 

 

The Smart Vortex project concerns customized continuous query processing over different kinds of 

streams originating from industrial contexts. Data originating in different kinds of streams need to be 

combined with data in regular databases, and thus it is required to design an extensible federated Data 

Stream Management System (FDSMS) where both streaming and regular data sources can be 

incorporated and where continuous queries (CQs) are expressed using a DSQL where queries over 

federations of different kinds of distributed data streams can be expressed.  

 

Parts of the data processing will require advanced computations (e.g. statistical) made in real-time 

over streaming data. To cope with this challenge, the DSQL must be extensible to allow application 

dependent functions to be called in CQs. Some of the computations made in real-time may be 

relatively expensive to compute. Therefore the DSQL must have facilities to perform expensive 

computations for decision support in real-time over streams.  

 

The conclusion is that, based on the above requirements, novel continuous query language facilities 

are needed for building the FDSMS of the Smart Vortex project. The existing prototype 

implementation of the data stream query language SCSQL will be extended with required 

functionality.   
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1. INTRODUCTION 
 

A central technology in Smart Vortex is the ability to search and analyze high volume data 

streams in distributed environments with means of a data stream management system 

(DSMS). The search and analysis are specified using continuous queries (CQs) expressed in 

a data stream query language (DSQL).  

 

It should be noted that there is not yet any standard proposal for a DSQL. Many of the 

principles for how to define such a query language are still being debated within the scientific 

community and literature [4][5].  

 

A DSMS is similar to a database management system (DBMS) with the difference that 

while a DBMS allows searching only stored data, a DSMS in addition provides query 

facilities to search directly in real-time data streaming from one or multiple sources. In Smart 

Vortex many different kinds of data stream sources originating from different kinds of 

equipment need to be processed, which leads to the need for a federated DSMS (FDSMS).  

 

Smart Vortex has some special requirements, not met by the existing DSQLs investigated in 

D3.2. In particular there is a need for a DSQL where combinations of streams from different 

kinds of data streams originating from different kinds of equipment can be queried. Different 

kinds of numerical algorithms will be applied on the extracted data streams for data analysis, 

reduction, and transformation. The DSQL must therefore be extensible so that customized 

operators can be defined. 

 

The data streams to be processed by the Smart Vortex FDSMS are furthermore highly 

distributed. Data stream processing can take place directly in the equipment, at the site where 

the equipment is located, at some central cluster computer at an engineering site, or even in an 

analyzing engineer’s workstation. It must therefore be possible to specify distributed CQs 

where different pieces of the computations required are executed at different distributed sites. 

 

All this leads to the requirement to base the query language used in Smart Vortex on an 

extensible DSQL where distributed CQs can be expressed. The project will require 

extensions of DSQL technology in order to meet additional performance and functionality 

requirements by the Smart Vortex applications. 

 

It is a great advantage to base the query language on technology where we have prototype 

implementations that fulfill the functional requirements and which can be extended for new 

requirements by Smart Vortex. In the UDBL group we have developed such a prototype 

system called Super Computer Stream Query Processor (SCSQ) with a query language 

SCSQL. We have chosen SCSQL as the query language to use in the FDSMS for the Smart 

Vortex project, as it is the state-of-art and we are in control of its implementation.  
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2. SCALABLE AND EXTENSIBLE DATA STREAM QUERY LANGUAGE 
 

Super Computer Stream Query processor, SCSQ, [8] [9] is a DSMS prototype developed at 

Uppsala University, where the CQs are specified in a query language called SCSQL which 

includes types and operators for sets, streams, and vectors. Vector processing operators enable 

queries to contain numerical computations over the input data streams. Composite types are 

allowed, which enables useful constructs such as vector of stream. The system is extensible so 

that the programmer can define customized data structures and query operators. SCSQ has 

been implemented to execute in a variety of hardware environments, including desktop PCs, 

Linux clusters, and IBM BlueGene. 

 

When executing an expensive CQ over streams of high rate, it is important that the CQ keeps 

up with the rate of the input stream. One strategy to keep up with the stream rate in overload 

situations is load shedding [7]. This is not an option if data loss is not tolerated. If the input 

stream is bursty, it may be feasible to balance the load over time by writing some tuples to 

disk during overload, and process them later during quieter periods. If the input stream rate is 

constantly high and if the application needs the DSMS to respond in time, state spill is not an 

option. One approach to keep up with the input stream is to parallelize the execution, which is 

the approach used in SCSQ.  

 

By allowing data parallelism to be specified in the DSQL it has been shown in [8] that SCSQ 

can make continuous query processing communication bound and not limited by the 

processing speed, even for expensive computations. Thus with SCSQL the capacity depends 

on the wire speed only - not the processor speed. This result enables expensive computations 

and decision support algorithms to be directly applied on streaming data in real-time, which is 

required to do intelligent decisions based on high volume events streaming from industrial 

equipment in Smart Vortex.  

 

The superior continuous query processing rate of SCSQ is enabled by the combination of two 

key technologies: parallelization of stream splitting in conjunction with the use of physical 

windows [8].  

 

The SCSQL query language is a DSQL implemented in SCSQ extending the functional query 

language AmosQL [1]. In SCSQL, a stream is an object that represents ordered (possibly 

unbounded) sequences of objects, a bag represents regular database relations, and a vector 

represents bounded sequences of objects. For example, vectors are used to represent stream 

windows, and vectors of streams are used to represent ordered collections of streams. 

 

An important property of SQSQL is that it is extensible so that programmers easily can define 

own foreign functions in some conventional programming language such as Java, Python, or 

C. For example, new kinds of stream event formats produced by particular kinds of 

communication protocols can be accessed through foreign functions and used in continuous 

queries. Data filtering or mining algorithms can be defined as foreign functions and used in 

queries. 

 

Another central feature of SCSQL is the facility to define distributed and massively parallel 

queries. The query language includes parallelization functions, which allow the user to 

specify customized parallelization and distribution of queries. This is enabled by high-level 

primitives for scalable stream splitting and for specifying distributed and parallel 

computations [8]. A fundamental problem of continuous query plan parallelization is the fact 

that heavyweight stream operators are bottlenecks. Parallelizing a data stream requires the 

input stream to be split into parallel sub-streams over which expensive continuous query 

operators are executed in parallel. In SCSQ the highly scalable parasplit operator partitions a 

stream of high volume into parallel sub-streams. Parasplit enables massive streamed scale-out 
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of continuous queries involving expensive computations. In this way costly decision making 

algorithms can be applied in real-time over steams. 

 

SCSQ is based on the mediator database system Amos II [1], which includes a main-memory 

object store and allows different kinds of distributed data sources to be queried. Each SCSQ 

node thus includes its own main-memory database where meta-data can be stored and 

queried. Typically CQs match combinations of incoming streaming data with meta-data in the 

local database. The data model used for the local database is semantic in the sense that 

complex data relationships can be defined declaratively using a functional and object-oriented 

data model. A local database may also contain wrappers of external databases, e.g. to retrieve 

meta-data from a regular relational database using SQL.  

 

In summary, SCSQL is an extensible query language for both stored and streamed data. 

SCSQL allows continuous and ad hoc queries over these data sources to produce derived 

streams. The foreign function interface of SCSQ allows any external data and processing to 

be plugged into SCSQ. Finally, the parallelization functions of SCSQL allow stream 

processing to be massively parallelized. 
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3. THE SCSQL QUERY LANGUAGE 
 

This section presents the important new features in the data stream query language SCSQL.  It 

extends the query language AmosQL [2] with stream and parallelization primitives. Please 

refer to [2] for those query language constructs SCQL have in common with AmosQL.  

 

The APIs for Java is documented in [1]. This API currently exactly the same as the APIs for 

Amos II. The differences from the programmer’s point of view is the ability to handle 

indefinite scans over streams, rather than finite conventional scans over query results.  The 

corresponding API for C is documented in [6]. 

 

In this section only some of the parallelization primitives of SCSQL are described. The query 

language primitives of AmosQL [2] are supported also by SCSQL. Important is that SCSQL 

is an extensible system so new SCSQL functions can be defined as new requirements are 

introduced by Smart Vortex. Refer to [8] and [3] for examples of more advanced usage of 

SCSQL. 

 

 

3.1 Basic SCSQ stream execution 

 

A single SCSQ server is started by calling scsq (scsq.exe in Linux) at the 

command prompt. In order to enable several SCSQ servers, a SCSQ coordinator must 

be running. The script swc (swc.sh in Linux) starts SCSQ and a SCSQ coordinator 

in the background. The SCSQ coordinator can then start new SCSQ servers on any 

node in a cluster. 

All data in SCSQ is represented by objects in SCSQL. The datatype stream represents 

possibly unbounded sequences of any kind of objects. For example, the result of a 

continuous sub-query is a stream.  

Parallel and distributed stream computations can be defined in SCSQL using 

parallelization functions.  

 

3.2 Parallelization functions 

 

A parallelization function operates on collections of streams, and is used for 

specifying parallel executions queries over streams. Figure 3.1 illustrates three basic 

classes of parallelization functions; splitstream, mapstream, and mergestream 

functions.  

A splitstream function splits an input stream into two or more output streams. The 

number of output streams of a splitstream function is called its width. A mapstream 

function applies a stream function (i.e. a query) on each stream in a collection of 

streams. Finally, a mergestream function merges (or joins) a collection of streams into 

a single output stream. Examples of stream merge functions implemented in SCSQ 

are: ustreams(), zipstreams(), and sort-merge-join of vectors, mergestreams(). All 

other stream merging functions are variants of these three basic functions. 
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Figure 3.1. Parallelization functions. 

3.2.1 Splitstream functions 

A splitstream function has the signature: 

splitstream(Stream s, Integer w, Function rfn, Function bfn) 

-> Vector Of Stream sv 

The input stream s is split into w output streams in the vector sv. The first functional 

argument rfn is the routing function, having signature 

 rfn(Object tpl, Integer w) -> Integer,  

which returns the output stream number (between 0 and w – 1) for each tuple that 

should be routed to a single output stream. The broadcast function  with signature 
bfn(Object tpl) -> Boolean  

returns true for tuples to be broadcasted to all output streams. bfn and rfn return 

nil or false for tuples that should neither be broadcasted nor routed. rfn and bfn 

are defined declaratively in the query language by the user.  

The following example shows how to split a stream of integers into two streams of 

integers, one containing odd numbers and the other one containing even numbers: 

splitstream(siota(1, 100000000), 2, #’modq’, #’f’); 

The function modq() is defined as:  

create function modq(integer i, integer q) -> integer as 

mod(i, q);  

When used as a routing function, modq() will route integers to output stream number 

i % q, where q is the number of output streams. To define an empty broadcast 

function we use the false function: 

 f(Object o) -> Boolean  

which returns false for all o. Using f() as a broadcast function, no tuples will be 

broadcasted.  

3.2.2 Mapstream functions 

The function mapstreams() has the signature: 

mapstreams(Vector of Stream sv, Function mapfn) -> Vector of 

Stream sw 

mapstreams() applies the function (query) mapfn() over each stream in the vector of 

streams sv. Each element swi of the ouput vector of streams sw contains the result of 

applying mapfn() over svi. The mapfn() used in mapstreams() must have the signature 

mapfn(Stream s) -> Stream r 

3.2.3 Merging streams 

The function ustreams() (union-all) merges the tuples of its input stream vector. The 

signature of ustreams() is:  

ustreams(Vector of Stream vs) -> Stream 
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The vector of stream vs contains one or more streams. Whenever a tuple is available 

on any of the streams in vs, ustreams moves that tuple and emits it to the output 

stream.  

For example, the following query makes a union-all of tuples from a broadcast:   

ustreams(splitstream(siota(1, 10000000), 2, #'f', #'t')); 

The function t(Object o) -> Boolean returns true for all o. Using t() as bfn and f() as 

rfn turns splitstream() into a broadcaster. 

The query returns a new stream as result without running it. To retrieve the tuples (events) 

from the stream use: 

 
in(ustreams(splitstream(siota(1, 100), 2, #'f', #'t'))); 

 

3.2.4 Pairing streams 

The function zipstreams() pairs tuples from a vector of streams by their order of 

arrival. The signature is 

zipstreams(Vector of Stream vs)->Stream of Vector 

As soon as each input stream vs[i] , i = 0…d–1 has a new tuple ti available, 

zipstreams(vs) moves the tuple from each input stream and emits a vector of 

tuples {t0, t1, … td–1} on its output stream. The dimensionality of the output stream 

vector is the same as the number of input streams. 

For example, the following query returns pairs of consecutive odd/even numbers:  

in(zipstreams(splitstream(siota(1, 100), 2, 

              #’modq’, #’f’))); 

3.2.5 Matching streams 

The function mergestreams() matches tuples arriving from a vector of streams based 

on some value (e.g. time stamp or sequence number) into a single stream. The 

signature is 

mergestreams(Vector of Stream of Vector vs, Integer attrib) -> 

Stream of Vector 

As soon as each input stream vs[i] , i = 0…d–1 has a new tuple wi available, 

mergestreams(vs) moves all tuples wi that have the smallest attribute value to the 

output stream. When all such tuples are emitted, mergestreams() waits until all 

streams have a new tuple wi and repeats.  

For example, this function computes two streams of numeric vectors in parallel and 

delays their emit frequencies (using retard()) before they are merged in the order of 

position 0 of the vectors. 

in(mergestreams(mapstreams({ 

  streamof(retard(0.5, {iota(10,15), 1})), 

  streamof(retard(0.5, {2*(iota(5,8)), 2})) 

},#'id'), 0)); 
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4 CONCLUSIONS 
 

The Smart Vortex project will require customized continuous query processing over different 

kinds of streams originating from industrial contexts. Furthermore, data originating in 

different kinds of streams need to be combined with data in regular databases. It is therefore 

important to design an extensible FDSMS where new kinds of both streaming and regular 

data sources can be incorporated in queries. 

 

Some of the processing to be made over streaming data will require more or less advanced 

computations (e.g. statistical) in real-time. It is therefore important to provide easy-to-use and 

flexible mechanisms to extend the system with application dependent functions called in 

continuous queries. The FDSMS must be extensible with customizable computations. 

 

Some of the computations made in real-time may be relatively expensive to compute. For 

example, there is need to compute vibration frequencies in real-time over data streams in 

order to detect resonances. Therefore the FDSMS must have the ability to perform more-or-

less expensive computations for decision support in real-time over streams. Here, real-time 

means that the system must on the average be able to keep up with the stream flow while 

making the necessary computations. 

 

The conclusion is that the most suitable DSQL to meet the requirements posed by the Smart 

Vortex project is the AmosQL with its streaming extensions in SCSQL. The federated DSMS 

should be built by extending SCSQ and SCSQL with new facilities required by Smart Vortex.  
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